Bird Classification using Ensemble Classifiers
نویسندگان
چکیده
This working note summarizes our submission to the LifeCLEF 2014 Bird Task which combines the outputs from a Python and Matlab classification system. The features used for both systems include Mel-Frequency Cepstral Coefficients (MFCC), time-averaged spectrograms and the provided meta-data. The Python subsystem combines a large ensemble of different classifiers with different subsets of the features while the Matlab subsystem is an ensemble of the Random Forest and Linear Discriminant Analysis (LDA) classifiers using local spectral and meta features. By combining this disparate set of features and classifiers, we managed to achieve a Mean Average Precision (MAP) score that is far superior to what is possible with any single classifier.
منابع مشابه
Ensemble Classification and Extended Feature Selection for Credit Card Fraud Detection
Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...
متن کاملOptimum Ensemble Classification for Fully Polarimetric SAR Data Using Global-Local Classification Approach
In this paper, a proposed ensemble classification for fully polarimetric synthetic aperture radar (PolSAR) data using a global-local classification approach is presented. In the first step, to perform the global classification, the training feature space is divided into a specified number of clusters. In the next step to carry out the local classification over each of these clusters, which cont...
متن کاملClassifier Ensemble Framework: a Diversity Based Approach
Pattern recognition systems are widely used in a host of different fields. Due to some reasons such as lack of knowledge about a method based on which the best classifier is detected for any arbitrary problem, and thanks to significant improvement in accuracy, researchers turn to ensemble methods in almost every task of pattern recognition. Classification as a major task in pattern recognition,...
متن کاملValidation of Synoptic Station Data Using Ensemble Classification on Central Iran
Today, the use of data recorded in synoptic stations of the country is one of the most significant sources of applied research for researchers. Data recorded automatically or manually at synoptic, climatological, and other stations are analyzed for statistical analysis. In this research, the data recorded in the synoptic stations of Iran, which are used to determine the days of dust, were analy...
متن کاملA Novel Ensemble Approach for Anomaly Detection in Wireless Sensor Networks Using Time-overlapped Sliding Windows
One of the most important issues concerning the sensor data in the Wireless Sensor Networks (WSNs) is the unexpected data which are acquired from the sensors. Today, there are numerous approaches for detecting anomalies in the WSNs, most of which are based on machine learning methods. In this research, we present a heuristic method based on the concept of “ensemble of classifiers” of data minin...
متن کامل